Multi-Exit BGP Issues

Aleksi Suhonen 12.02.2009 TREX Workshop 2009

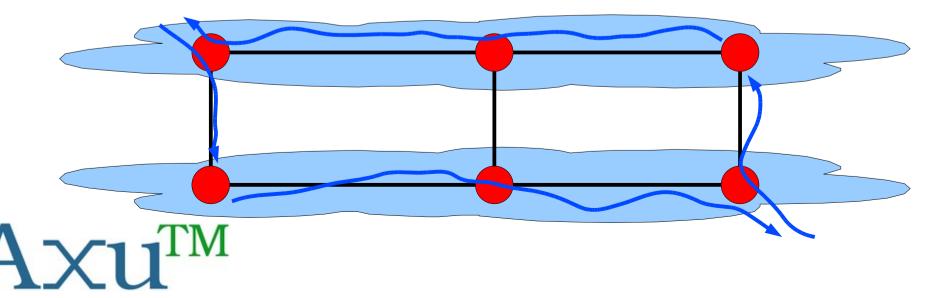
Issues

Paradigms

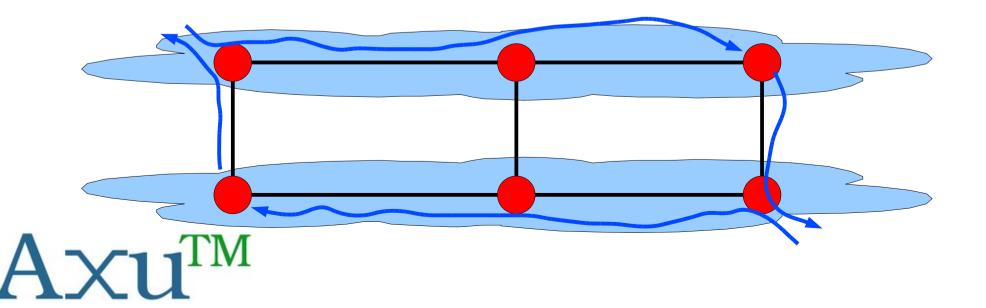
S

- Peering Policy
- Route Reflectors
- Address Planning
- Topology

- Hot Potato
 - aka Closest Exit
- Best Exit
- "Hot Chili"


Drivers

- Efficient use of resources
- High reliability
- Predictable performance
- Low costs


Hot Potato

- Default Paradigm as per RFC4271
- Minimizes Backbone Traffic
- Maximizes Aggregate Bandwidth
- Yields Asymmetric Routing

Best Exit

- Requires Multi-Exit Discriminators (MEDs)
- Maximizes Control over Path
- Yields Asymmetric Routing

Peering Policy

- Do you want to announce MEDs?
- Do you want to accept MEDs?
- Who will you peer with?
- Peering can add potential exit points
 And thus potential aggregate bandwidth
 - And thus potential aggregate bandwidth
- Peering can also reduce their number
 - But improve their quality

Hot Chili

- RFC1771 doesn't specify AS_PATH as part of the best path selection algorithm
- RFC4271 does, but local policy may still override it

Peering Paradigm Optimization Scale

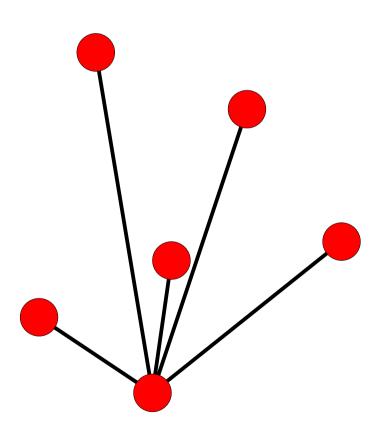
Yox ox ox

the entry of the state of the s

Hor Chili

Best Exit "Quality"

the strange of the st


Route Reflectors

- RR chooses the best path according to its local view of the network
- When the best path disappears, it takes time to find the next best path

Backbone Topology

"All roads lead to Rome"

Address Planning

- If addresses from one prefix are spread across the whole network, that prefix cannot benefit from MEDs
- Example: Funet's 193.166.0.0/15
- Counter-Example: Funet's Universities

Peering Paradigm Optimization Scale

Yox ox ox

the entry of the state of the s

Hor Chili

Best Exit "Quality"

the strange of the st

