

WDM Stuff AKA.

Sami

IP/Optical integration & Management

Alcatel · Lucent

COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

BEYOND 100G FIRST TO MARKET IN 400Gb/s

		PSE	
Year	2010	2012	
Speed	100 Gb/s	400 Gb/s	
Line rates	40G, 100G	40G, 100G, 200G, 400G	
Capacity	8.8T	>23T	
Reach	2,000 Km	> 3,000 Km	
Power/Gb*	650 mW	425 mW	
*Chipset power per Gigabit			

MARKET'S FIRST COMMERCIAL 400G SOLUTION HIGHER DENSITY, BETTER PERFORMING **100G SOLUTIONS**

AT THE SPEED OF IDEAS™

AGENDA

- 1. DRIVERS FOR IP OPTICAL CONVERGENCE
- 2. CROSS-LAYER ARCHITECTURE AND CONNECTIVITY OPTIONS
- 3. END-TO-END SERVICE DELIVERY AND MANAGEMENT
- 4. FROM CONNECTIVITY TO TRACKING CAPABILITIES
- 5. CONCLUSION

• Alcatel • Lucent 🥢

BANDWIDTH DRIVERS TRANSFORM THE OPTICAL NETWORK

MORE THAN

OF ALL NEW SOFTWARE WILL BE AVAILABLE AS **CLOUD SERVICES** BY 2014* APPROXIMATELY

58%

OF ALL INTERNET TRAFFIC **WILL BE VIDEO** BY 2015** SMART DEVICES WILL BE CONNECTED BY 2020***

Alcatel
 Lucent

MORE THAN

*Bell Labs – Value of Cloud for a Virtual Service Provider study, 2011

**Informa Telecoms and Media, 2011

***Strategy Analytics

AT THE SPEED OF IDEAS™

COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

MEETING THE CHALLENGE

- Address network capacity needs with 100G
- Ensure 100G is deployed optimally and cost effectively
- Add packet to reduce service delivery costs
- Introduce more services at multiple layers to more highly leverage the optical network and accelerate time-to-revenue

Alcatel · Lucent

ACHIEVE THIS AT LOWEST COST PER TRANSPORTED BIT

AT THE SPEED OF IDEAS[™]

IP-OPTICAL INTEGRATION OBJECTIVES

Advanced IP-Optical Integration

CROSS-LAYER ARCHITECTURE AND CONNECTIVITY OPTIONS DESIGN VALUE - MULTIPLE CHOICES FOR OPTIMAL NETWORK UTILIZATION

- Wide range of inter-workable and pre-integrated connectivity solutions
- Multi-layer design tolls/expertise for optimal cost evaluation (lower OpEx and CapEx)
- Maximize GREEN

FROM CONNECTIVITY TO TRACKING CAPABILITIES **PROACTIVE VALUE – HIGH AVAILABILITY**

- · Identify impact of optical fault on IP services/Customers
- Integration of Wavelength Tracking and IP OAM status
- Zero Touch Photonics management for least cost operations and CAPEX savings

Alcatel · Lucent

END-TO-END SERVICE DELIVERY AND MANAGEMENT PROVISIONING VALUE – DYNAMIC SERVICE DELIVERY

- Integrated and automated provisioning of IP Services and Optical paths
- · GMPLS and Sharing of Risk Group (SRGL) information to ensure path diversity
- · Integrated workflows and templates

CROSS-LAYER ARCHITECTURE AND CONNECTIVITY OPTIONS

• Alcatel•Lucent 🥢

IP OPTICAL CONVERGENCE

PHYSICAL NETWORK EVOLUTION

How will currently separate IP and optical networks evolve into a single converged IP-optical network?

- There are several IP Optical interworking options with different levels of integration
- The optimal choice depends on network topology, traffic volumes and service mix
- Besides IP optical interworking considerations this is mostly a business case decision

Alcatel
 Luce

But what about IP-optical integration at equipment level?

IP-OPTICAL INTERWORKING DIFFERENT OPTIONS

- IP OVER FOADM BASED PHOTONIC ARCHITECTURE
- NO OPTICAL CONTROL PLANE

- IP OVER ROADM-BASED PHOTONIC ARCHITECTURE
- LAMBDA GROOMING
- PHOTONIC CONTROL PLANE

• IP OVER OTN/ROADM BASED SWITCHED/PHOTONIC ARCHITECTURE

Alcatel
 Lucent

- SUBLAMBDA/LAMBDA GROOMING
- MRN DESIGN AND CONTROL PLANE

IP AND DWDM TRANSPONDER INTEGRATED IN DWDM

Alcatel · Lucent

AT THE SPEED OF IDEAS™

IP AND DWDM

IP AND DWDM APPLICABILITY

- Advantages
 - Low cost router optics
 - Minimal IP-optical interworking need

- Drawbacks
 - Scaling cost (meshing cost, low fill grade)
 - No "leased line" service support
 - Costly due to many E-O-E conversions
 - No IP visibility on transport performance
 - IP interfaces/links need to be manually mapped on photonic layer resources

Simple but inflexible and costly to scale Least amount of IP – optical integration

IP OVER DWDM TRANSPONDER INTEGRATED IN ROUTER

Alcatel·Lucent

AT THE SPEED OF IDEAS[™]

IP AND DWDM

IP OVER DWDM APPI ICABII ITY

Advantages

- Reduce need for EOE conversions
- IP layer has direct visibility on optical transport layer performance
- UNI allows IP layer to dynamically request lambdas in photonic layer
- Lambda leased line services

Drawbacks

- Colored router optics are more costly
- Must resolve IP-optical interworking challenges at data and control plane
- No native TDM (sublambda) service support
- Ties the capacity of the DWDM layer to the router speed port.

Better scale & flexibility but more exposed to IP – optical interworking issues

Alcatel · Lucei

IP OVER OTN (OVER DWDM) GRANULAR GROOMING AND TRUE TDM

			Feature	Implementation
			Grooming capabilities	Packet (statistical multiplexing) Lambda (wavelength switching) ODU grooming and switching
		UNI	Router interconnect	ETH/VLAN Port based Lambda
TDM GMPL Client	GMPLS	Multi-layer Resiliency	ETH-OAM IWK IP/MPLS resiliency (FRR, LFA) ODU/Photonic control plane	
		Control plane interconnection	•GMPLS UNI (colored interfaces) •Static (black & white interfaces)	
Switched WDM		Switched WDM	Granularity of connectivity	 Port bitrate OTN flexible Electrical Grooming for efficient lambda filling
			TDM client	Sublambda leased line Lambda leased line

AT THE SPEED OF IDEAS™

Ú

IP AND DWDM

AT THE SPEED OF IDEAS™

IP OVER OTN APPLICABILITY

Advantages

- IP layer has indirect visibility on digital transport layer issues
- UNI allows IP layer to dynamically request lambdas/circuits from Switched WDM
- Flexible, granular and highly efficient traffic grooming with selective IP shortcut options
- Sublambda/Lambda leased lines services

Drawbacks

- IP layer has direct visibility on optical transport layer issues
- Colored router optics are more costly
- EOE conversion to access sublambda layer

Alcatel · Luce

- Must resolve IP-optical interworking challenges at data and control plane

Best scale, flexibility and service versatility. Most exposed to IP – optical integration issues.

FROM CONNECTIVITY TO TRACKING CAPABILITIES

COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

MANAGED PHOTONIC NETWORKING PHOTONIC OAM

WAVELENGTHTRACKER[™] TECHNOLOGY

- Wavelength keyed to unique ID for every service in the network
- Individual service path tracing and view (including alien services)
- Collision and misconnection detection

PER-SERVICE REMOTE OPTICAL POWER MEASUREMENT

- Accurate, continuous, ubiquitous monitoring everywhere in the network and within each node
- Threshold alarming
- Sophisticated fault isolation, no need for additional equipment

UNIQUE EMBEDDED OSNR MONITORING

- Automatic control of power levels and channel OSNR
- Key for real-time link engineering and characterization
- Layer 0 latency monitoring

AT THE SPEED OF IDEAS[™]

Photonic OAM WaveTracker management – path and fiber view

- WaveTracker management provides visibility into the analog power levels of the photonic signals that make up the optical transport services
 Optical fiber view
- Optical Transport Service trace
- Fault sectionalization and isolation
- Threshold alarming
- All power measurement points on 1
 1830 PSS network elements

END-TO-END SERVICE DELIVERY AND MANAGEMENT

COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Service activation time

COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

CONTROL PLANE INTEGRATION REQUIREMENTS AND OBJECTIVES

AT THE SPEED OF IDEAS™

5620 SAM-1830 PSS – Applications coverage Access, Metro/Regional, Core, Long Haul, TOADM, ROADM, FOADM

Multi layer network resiliency

AT THE SPEED OF IDEAS[™]

ALCATEL-LUCENT 5620 SERVICE AWARE MANAGER

INTEGRATED ELEMENT + NETWORK + SERVICE MANAGEMENT FOR ALCATEL-LUCENT HIGH

LEVERAGE NETWORK

Alcatel
 Lucent

Extending the 5620 SAM's reach with management for DWDM Optics

AT THE SPEED OF IDEAS[™]

Alcatel Lucent

5620 SAM IP/Optical management Cross-domain management applications

ALCATEL-LUCENT E-E NETWORK MANAGEMENT PROPOSAL KEY BENEFITS

Automatic Network and Resource Discovery	 KEY BENEFITS Eases the installation and commissioning process Simplifies the network activation
Dynamic Provisioning	 KEY BENEFITS Allows to offer bandwidth-on-demand services & end-to-end provisioning Simplifies the network planning Eliminates the need of expensive and error-prone manual interventions and assures a in time return to service
Distributed Automatic Restoration	 KEY BENEFITS Enabler to maximize network resources utilization in the network Increase network availability Provides cross network layer resiliency optimisations

CONCLUSION

COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

IP – OPTICAL CONVERGENCE STRATEGY EVOLVING TO HIGH LEVERAGE NETWORKS

PHYSICAL NETWORK EVOLUTION

Progressive integration of IP and optical technologies on a few common, but versatile hardware platforms

LOGICAL NETWORK EVOLUTION

Modular product architecture to only include functional layers that services need, in a pay-as-you-grow model

OPERATIONAL WORKFLOW OPTIMIZATION

Cross-domain interaction and UNI control plane to orchestrate operations across IP and Optical domains

AT THE SPEED OF IDEAS™

CORE IP-OPTICAL CONVERGENCE ALCATEL-LUCENT VALUES

BEST IN CLASS INNOVATIVE IP AND OPTICAL

- LEVERAGE INNOVATIVE PLATFORMS FLEXIBLY SUITED FOR FULL RANGE OF NETWORKING SOLUTIONS AND APPLICATIONS
 - IP-Optical 100G/400G Leadership
 - Full flexible OTN grooming choices and wavelength filling

EASY DESIGN, INSTALLATION AND INTEROP -MULTI-LAYER AND CROSS-LAYER •IP-Optical Pre-Integrated Market Validated Solutions •Wavelength tracking, spanning from IPoWDM to WDM

MEETING SLA AND EFFICIENT OPERATIONS -Field-proven and widely deployed GMPLS for differentiated optical SLA

•• Alcatel • Lucent

- Converged Network Management, adapting to operator's operations structure (IP-Optical single or separated)

AT THE SPEED OF IDEAS[™]

AT THE SPEED OF IDEAS[™]

www.alcatel-lucent.com

