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What is Oxidized?

• Multi-vendor network element configuration backup and archiving software

• Fetches configuration, processes and saves it to a revision control system

• Attempt to remake Rancid and use more modern technologies and software

• GIT vs CVS/SVN

• Ruby vs Perl/TCL/Expect



Concurrent configuration 
polling

• Currently oxidized is a single daemon process

• Uses thread per configuration poll worker

• Automatically adjusts the amount of threads

• User can set maximum limit though

• Example: 10000 nodes, 5 seconds on average per node, target time 1 hour -> 13 threads

• Only configuration poll and preprocessing are concurrent

• Configuration is stored sequentially

• Key features



Modular design

• source
• Loads the list of nodes and applies optional parameters 

• Supported: flat files, SQLite

• input
• Interacts with network elements. Emulates CLI user if needed. 

• Supported: Telnet, SSH

• output
• Stores configuration.

• Supported: flat files, GIT

• model
• Describes what to get from the node and optionally preprocesses the output

• Support for devices from vendors such as: Cisco, Juniper, Arista, HP, Alcatel..

• New models implemented quite often

• Key features



RESTful API

• Optional feature. Separate gem ’oxidized-web’

• Simple web server, no authentication or anything fancy

• Provides a way to interact with the Oxidized daemon remotely

• Can be used to integrate Oxidized into other systems. For example:

• Network monitoring (alerts)

• Provisioning systems

• JSON input/output, HTML GUI for human interaction

• Key features



RESTful API
• Node list



RESTful API
• Node details



RESTful API
• Node statistics



RESTful API
• Node configuration (latest)



Model API
• Rationale

• How to make node integration to Oxidized as easy and non-frustrating as possible?

• Should be fast, easy and DRY

• We really don’t need hundreds of lines of duplicated code

•  Should be achievable even for non-programmers



Model API

• Oxidized is written in Ruby

• Models are Ruby classes

• Oxidized implements Domain-Specific Language (DSL) for interaction and convenience

• Model is usually short and expressive

• More complex context-aware models are possible through helper methods and instance variables

• Your imagination is the only limit although models should still be maintainable



Model API
• Example

class TiMOS < Oxidized::Model

  prompt /^([-\w\.:>\*]+\s?[#>]\s?)$/

  cmd 'admin display-config’

  

  cfg :ssh do

    post_login 'environment no more'

    pre_logout 'logout'

  end

end



Model API
• Example – Enhanced to include hardware information

class TiMOS < Oxidized::Model

  comment  '# '

  prompt /^([-\w\.:>\*]+\s?[#>]\s?)$/

  

  cmd 'show card state' do |cfg|

    comment cfg

  end

  

  cmd 'admin display-config’

  

  cfg :ssh do

    post_login 'environment no more'

    pre_logout 'logout'

  end

end



Model API
• Example – Context awareness

class JunOS < Oxidized::Model

  ...snip...

  cmd 'show version' do |cfg|

    @model = $1 if cfg.match /^Model: (\S+)/

    comment cfg

  end

  post do

    out = ''

    case @model

    when 'mx960'

      out << cmd('show chassis fabric reachability')  { |cfg| comment cfg }

    end

    out

  end

  ...snip...

end



TODO

• Oxidized is used in production though there is still a lot to do

• Things we need to improve:

• code

• testing

• documentation

• model support

• Please provide us feedback and tell if you are using Oxidized :)



Thank you

• # gem install oxidized oxidized-web

• https://github.com/ytti/oxidized

• Also try oxidized-script for all your shell scripting needs

https://github.com/ytti/oxidized
https://github.com/ytti/oxidized
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