

Archiving network element
 configuration with
Oxidized
Trex Workshop 2014

Background

• Presenter

• Anton Aksola (aakso@Twitter,IRCNet,Github)

• Nebula Oy (AS29422 & AS13276)

• Hosting and connectivity services

• Contributing developer

• Founding developer

• Saku Ytti (ytti@IRCNet,Github)

• TDC Oy (AS3292)

What is Oxidized?

• Multi-vendor network element configuration backup and archiving software

• Fetches configuration, processes and saves it to a revision control system

• Attempt to remake Rancid and use more modern technologies and software

• GIT vs CVS/SVN

• Ruby vs Perl/TCL/Expect

Concurrent configuration
polling

• Currently oxidized is a single daemon process

• Uses thread per configuration poll worker

• Automatically adjusts the amount of threads

• User can set maximum limit though

• Example: 10000 nodes, 5 seconds on average per node, target time 1 hour -> 13 threads

• Only configuration poll and preprocessing are concurrent

• Configuration is stored sequentially

• Key features

Modular design

• source
• Loads the list of nodes and applies optional parameters

• Supported: flat files, SQLite

• input
• Interacts with network elements. Emulates CLI user if needed.

• Supported: Telnet, SSH

• output
• Stores configuration.

• Supported: flat files, GIT

• model
• Describes what to get from the node and optionally preprocesses the output

• Support for devices from vendors such as: Cisco, Juniper, Arista, HP, Alcatel..

• New models implemented quite often

• Key features

RESTful API

• Optional feature. Separate gem ’oxidized-web’

• Simple web server, no authentication or anything fancy

• Provides a way to interact with the Oxidized daemon remotely

• Can be used to integrate Oxidized into other systems. For example:

• Network monitoring (alerts)

• Provisioning systems

• JSON input/output, HTML GUI for human interaction

• Key features

RESTful API
• Node list

RESTful API
• Node details

RESTful API
• Node statistics

RESTful API
• Node configuration (latest)

Model API
• Rationale

• How to make node integration to Oxidized as easy and non-frustrating as possible?

• Should be fast, easy and DRY

• We really don’t need hundreds of lines of duplicated code

• Should be achievable even for non-programmers

Model API

• Oxidized is written in Ruby

• Models are Ruby classes

• Oxidized implements Domain-Specific Language (DSL) for interaction and convenience

• Model is usually short and expressive

• More complex context-aware models are possible through helper methods and instance variables

• Your imagination is the only limit although models should still be maintainable

Model API
• Example

class TiMOS < Oxidized::Model

 prompt /^([-\w\.:>*]+\s?[#>]\s?)$/

 cmd 'admin display-config’

 cfg :ssh do

 post_login 'environment no more'

 pre_logout 'logout'

 end

end

Model API
• Example – Enhanced to include hardware information

class TiMOS < Oxidized::Model

 comment '# '

 prompt /^([-\w\.:>*]+\s?[#>]\s?)$/

 cmd 'show card state' do |cfg|

 comment cfg

 end

 cmd 'admin display-config’

 cfg :ssh do

 post_login 'environment no more'

 pre_logout 'logout'

 end

end

Model API
• Example – Context awareness

class JunOS < Oxidized::Model

 ...snip...

 cmd 'show version' do |cfg|

 @model = $1 if cfg.match /^Model: (\S+)/

 comment cfg

 end

 post do

 out = ''

 case @model

 when 'mx960'

 out << cmd('show chassis fabric reachability') { |cfg| comment cfg }

 end

 out

 end

 ...snip...

end

TODO

• Oxidized is used in production though there is still a lot to do

• Things we need to improve:

• code

• testing

• documentation

• model support

• Please provide us feedback and tell if you are using Oxidized :)

Thank you

• # gem install oxidized oxidized-web

• https://github.com/ytti/oxidized

• Also try oxidized-script for all your shell scripting needs

https://github.com/ytti/oxidized
https://github.com/ytti/oxidized

	
	Background
	What is Oxidized?
	Concurrent configuration polling
	Modular design
	RESTful API
	RESTful API
	RESTful API
	RESTful API
	RESTful API
	Model API
	Model API
	Model API
	Model API
	Model API
	TODO
	Thank you

