VXLAN/EVPN in a Nuttshell

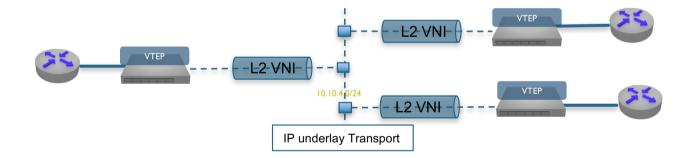
Ralf Korschner, Systems Engineer EMEA ralf@arista.com

Confidential. Copyright © Arista 2017. All rights reserved.

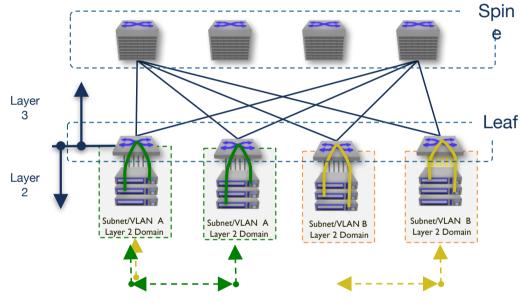
Agenda

- VXLAN Introduction
- VXLAN for IXPs
- Control Plane Options
 - Head-end Replication
 - EVPN

VXLAN Basics

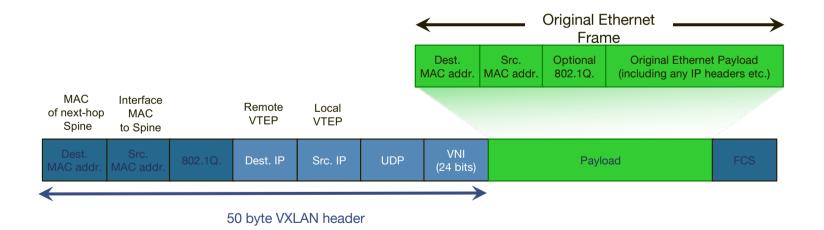

3

Confidential. Copyright © Arista 2016. All rights reserved.


Introducing VXLAN

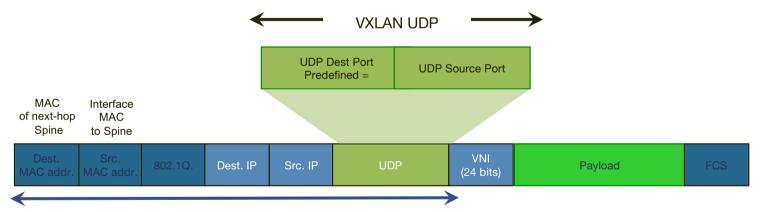
- Layer 2 "Overlay Networks" on top of a Layer 3 network
 - "MAC in IP" Encapsulation
 - Layer 2 multi-point tunneling over IP UDP
 - Transparent to the physical IP underlay network
 - Provides Layer 2 scale across the Layer 3 IP fabric

Data Center – Layer 3 Overlay Architectures


Scope of VM Mobility Expanded to within the VNI

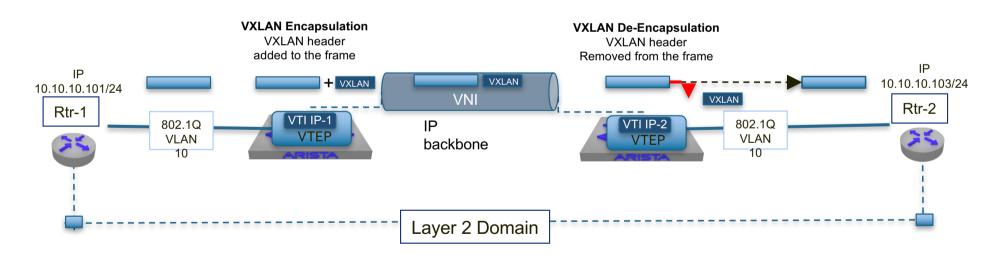
- Virtual eXtensible LAN (VXLAN)
 - IETF framework proposal, co-authored by:
 - > Arista
 - > VMware
 - > Cisco
 - > Citrix
 - Red Hat
 - > Broadcom
- Enables Layer 2 interconnection across Layer 3 boundaries
 - Transparent to the physical IP network
 - Provides Layer 2 scale across the Layer 3 IP fabric
 - Abstracts the Virtual connectivity from the physical IP infrastructure
 - Enables Vmotion, etc. across IP fabrics

VXLAN Encapsulated Frame Format


- Ethernet header uses local VTEP MAC and default router MAC (14 bytes plus 4 optional 802.1Q header)
- The VXLAN encapsulation source/destination IP addresses are those of local/remote VTI (20 bytes)
- UDP header, with SRC port hash of the inner Ethernets header, destination port IANA defined (8 bytes)
 - Allows for ECMP load-balancing across the network core which is VXLAN unaware.
- 24-bit VNI to scale up to 16 million for the Layer 2 domain/ vWires (8 bytes)

VXLAN Encapsulated Frame Format

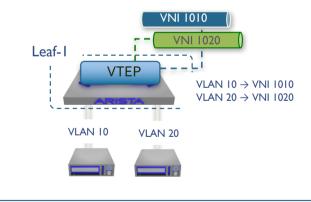
- To provide Entropy across a multi-path ECMP underlay network
 - UDP source port created from a Hash of the inner frame
 - What fields are hashed from the inner is not defined in the standard
 - Silicon vendor, will define the level of Entropy that can be achieved
 - UDP destination port, predefined in the standard as 4789



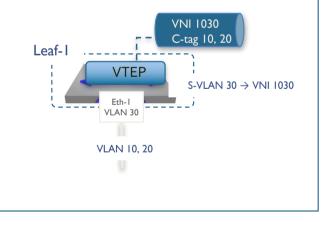
Source Port: It is recommended that the UDP source port number be calculated using a hash of fields from the inner packet - one example being a hash of the inner Ethernet frame's headers. When calculating the UDP source port number in this manner, it is RECOMMEND that the value be in the dynamic/private port range 49152-65535 [RFC6335].

VXLAN Terminology

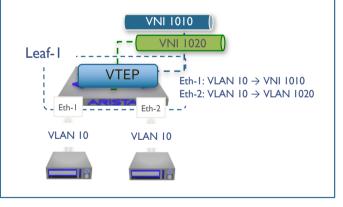
- Virtual Tunnel End-point (VTEP).
 - Entry point for connecting nodes into the VXLAN overlay network.
 - Responsible for the encap/decap with the appropriate VXLAN header.
- Virtual Tunnel Identifier (VTI)
 - An IP interface used as the Source IP address for the encapsulated VXLAN traffic
 - IP address residing in the underlay network
- Virtual Network Identifier (VNI)
 - A 24-bit field added within the VXLAN header.
 - Identifies the Layer 2 segment of the encapsulated Ethernet frame



VXLAN Terminology - VLAN service interfaces


VLAN to VNI mapping

- One to One mapping between VLAN ID and the VNI
- Mapping is only locally significant,
- VLAN ID not carried on VXLAN encap frame
- Allows VLAN translation between remote VTEPs


S-VLAN to VNI mapping

- Mapping of the outer S-Tag to a single VNI
- Inner C-Tags are transported within a single VNI
- The inner VLAN ID are carried on VXLAN encap frame
- Ability to transport all customer VLANs across a single VXLAN point to point link

Port + VLAN to VNI mapping

- Mapping traffic to a VNI based on a combination of the ingress port and it VLAN-ID
- The VLAN ID is not carried on VXLAN encap frame
- Provides support for overlapping VLANs within a single VTEP to be mapped to different VNIs

VXLAN Control Plane Options

Confidential. Copyright © Arista 2016. All rights reserved.

VXLAN Control Plane Options

• The VXLAN control plane is used for MAC learning and packet flooding

- Learning what remote VTEP a host resides behind
- Allowing the mapping of remote MACs to their associated remote VTEP
- Mechanism for forwarding of the Broadcast and multicast traffic within the Layer 2 segment (VNI)

Controller Model

- State learning driven by third-party controller
- OVSDB or OpenStack ML2 plugin for orchestration
- Data Center virtualization and Orchestration focus

openstac

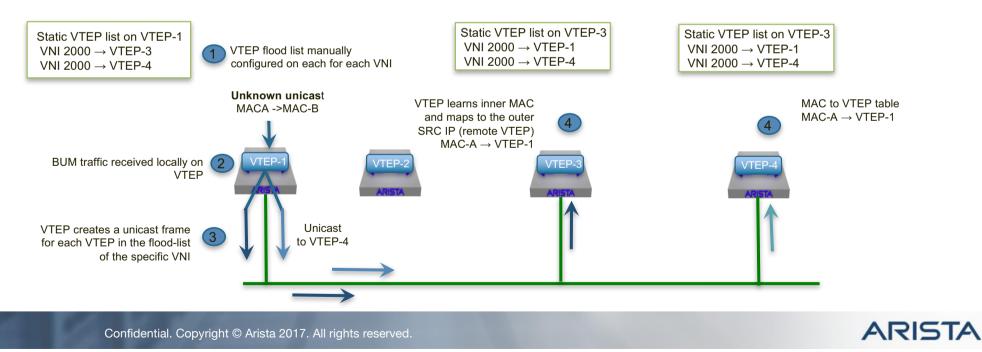
IP Multicast Control Plane

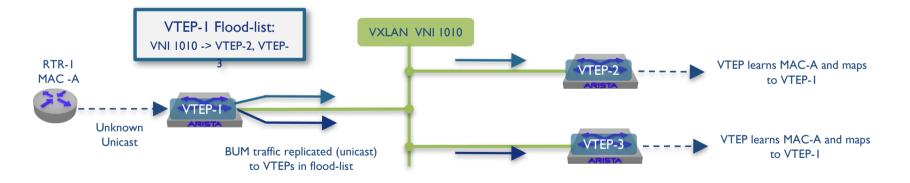
- VTEP join an associated IP multicast group(s) for the VNI(s)
- Unknown unicasts forwarded to VTEPs in the VNIs via IP multicast
- Flood and learn and requires IP multicast support in the underlay
- Limited deployments

Head-End Replication (HER)

- BUM traffic replicated to each remote VTEPs in the VNIs
- Unicast Replication carried out on the ingress VTEP
- MAC learning still via flood and learn, but no requirement for IP multicast

EVPN Model

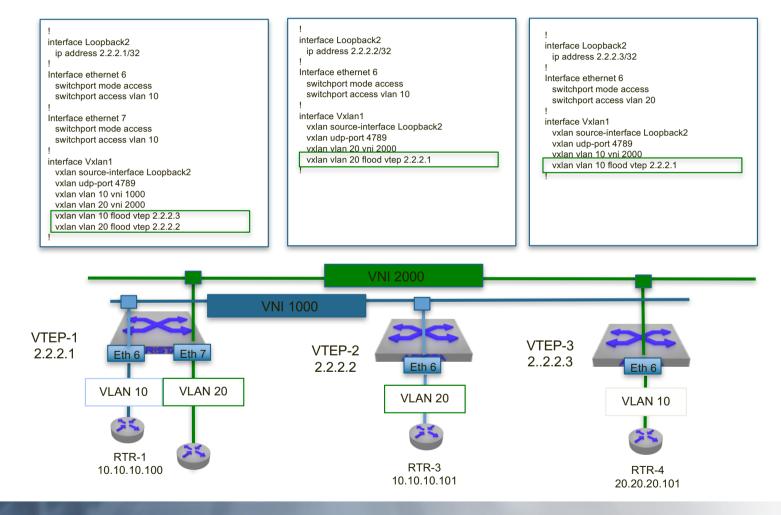

- BGP used to distribute local MAC to IP bindings between VTEPs
- Broadcast traffic handled via IP multicast or HER models
- Dynamic MAC distribution and VNI learning, configuration can be BGP intensive


VXLAN Control plane – HER

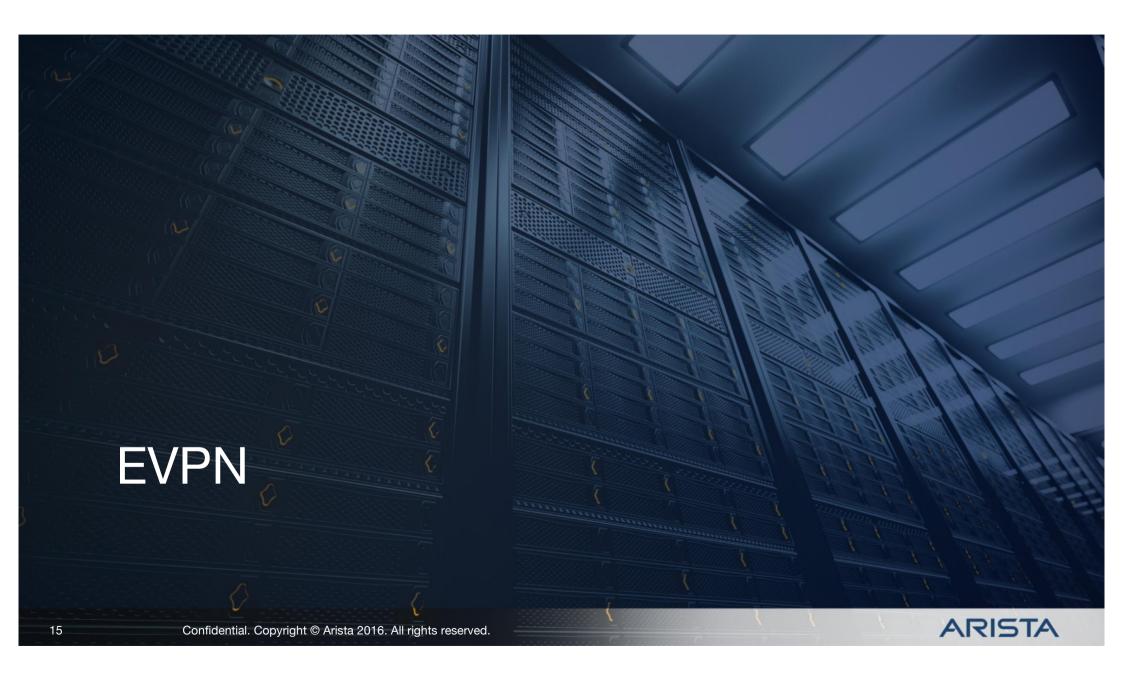
- Head-end Replication operation
 - Each VTEP is configured with an IP address "flood list" of the remote VTEPs within the VNI
 - Any Broadcast/Multicast or Unknown traffic is then replicated to the configured VTEPs in the list
 - Remote VTEPs receiving the flooded traffic learn inner source MAC from the received frame
 - VTEP's creating a remote MAC to outer SRC IP (VTEP) mapping for the entry

VXLAN Control Plane - HER

- Head-end Replication operation
 - Each VTEP is configured with an IP address "flood list" of the remote VTEPs within the VNI
 - Any Broadcast/Multicast or Unknown traffic is then replicated to the configured VTEPs in the list
 - Remote VTEPs receiving the flooded traffic learn inner source MAC from the received frame
 - Creating a remote MAC to outer SRC IP (VTEP) mapping for the entry



Flood list requires provisioning, MAC learning via flood and learn


Confidential. Copyright © Arista 2017. All rights reserved.

VXLAN Control Plane – HER, simple config

What is Ethernet VPN (EVPN) - Standard body for EVPN

- EVPN Standard RFC 7432
 - Specifics an BGP EVPN control plane with a MPLS data plane
 - BGP control plane, new address family to advertise MAC/IP and IP prefixes.
 - Previously known as draft-ietf-l2vpn-evpn
 - Multi-vendor authors involving vendors and operators : ALU, Cisco, Juniper, AT&T, Bloomberg and Verizon
- Proposal for EVPN with Network Virtualisation Overlay (NVO)
 - Same EVPN control plane with a VXLAN Data plane (NGRE, MPLSoGRE)
 - Draft-ietf-bess-evpn-overlay

For the EVPN Data Plane, currently 1 standard (MPLS) and 2 proposals (NVO and PBB)

EVPN Protocol Summary

• EVPN Protocol recap

- BGP control plane for the advertisement of MAC +IP binding and IP-prefixes
- Support for multiple encapsulations VXLAN, NVGRE (NVO draft) and MPLS (RFC 7342)
- New BGP address family, AFI = 25 (L2VPN) and SAFI =70 (EVPN)
- IPVPN concepts for the multi-tenancy
 - \gg Route Distinguishers to provide support for overlapping IP between tenant's
 - » Route-Targets to allow the control of the export and import of route between VRFs

Route Type	Description
1	Auto-Discover Segment route - Used in EVPN's multi-homing deployments to allow the advertisement of Nodes sharing the same Ethernet Segment. Arista is supporting MLAG for multi-homing, support interpreting type-1 routes
2	MAC address Route - Advertisement of locally learnt/provisioned MAC address and optionally IP addresses. Can be advertised with a single label (asymmetric IRB) or dual label (symmetric IRB)
3	Inclusive Multicast Ethernet Route - Used to advertise EVI/VNI membership for the creation of ingress replication list.
4	Ethernet Segment Route – Used in multi-homing deployments to allow the dynamic discovery of shared Ethernet segments Arista is supporting MLAG for multi-homing no need to support this route
5	IP prefix Route, advertisement of a IP prefix and next-hop, no MAC address for the route is advertised.

Confidential. Copyright © Arista 2017. All rights reserved.

Ethernet VPN

- EVPN, MP-BGP control-plane for delivering L2 and L3 VPN services with VXLAN
 - Evolution from the flood-learn mechanism of traditional L2 VPN (VPLS) service
 - Abstracts the (MP-BGP) control-plane from the (VXLAN/MPLS/PBB) forwarding plane
 - MP-BGP control plane to advertise host MAC and IP addresses and IP prefixes
 - Allows within a single MP-BGP control, L2 VPNs (hosts addresses) and L3 VPNs (IP prefixes).
- Potential use cases
 - Network virtualisation (overlay) services for stretching Layer 2 connectivity
 - Integration of Layer 2 and Layer 3 VPN services in the overlay
 - Data Center Interconnect (DCI)
 - Internet Exchange Points (IXPs)

What is Ethernet VPN (EVPN) -- Standard body for EVPN & EANTC Interop Testing

- Standards and Draft documents
 - RFC 7432 BGP MPLS-Based Ethernet VPNs
 - <u>https://tools.ietf.org/html/rfc7432</u>
 - Network Virtualisation Overlay solutions using EVPN VXLAN/NVGRE forwarding model
 - <u>https://tools.ietf.org/html/draft-ietf-bess-evpn-overlay-04</u>
 - Integrated Routing and Bridging within EVPN
 - <u>https://www.ietf.org/archive/id/draft-sajassi-l2vpn-evpn-inter-subnet-forwarding-05.txt</u>
 - IP prefix advertisement in EVPN
 - <u>https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-02</u>
- EANTC MPLS+ SDN+ NFV World Congress

-<u>http://www.eantc.de/fileadmin/eantc/downloads/events/2011-</u> 2015/MPLSSDNNFV_2017/EANTC-MPLSSDNNFV2017-WhitePaper-Final_v2.pdf

Deploying VXLAN with EVPN EVPN Operation

Confidential. Copyright © Arista 2016. All rights reserved.

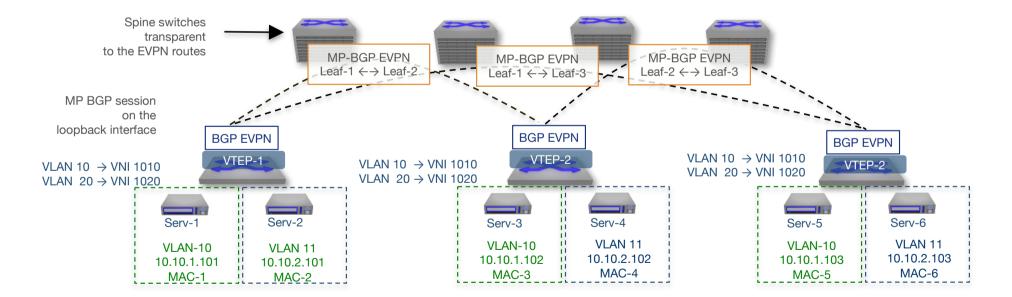
EVPN Operation

- EVPN is built on Multi Protocol BGP
 - Introduction of a new EVPN address family
 - >> Address Family Identifier 25 (Layer 2 VPN) subsequent AFI 70 (EVPN)
 - » Advertisement of host MAC/IP binding and IP prefixes
 - Distribution of Layer 2/3 information allows support for integrated bridging and routing in VXLAN overlay networks.
 - Utilises Layer 3 VPN concepts of Route-distinguishers and Route Targets
 - > Providing support for multi-tenant VXLAN overlays
 - >> Support for over-lapping IP address spaces between tenants
 - Multiple tenant's NLRI information carried within a single shared BGP session,
 - > NOT BGP session per tenant

EVPN Operation – Route Types

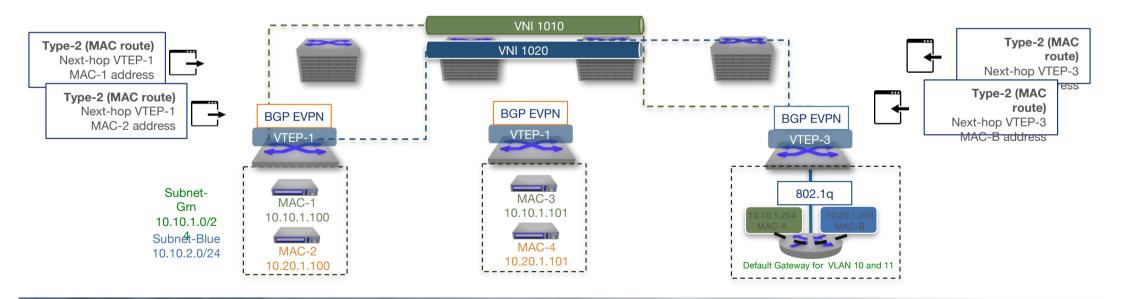
- The new EVPN NLRI defines five route types
 - Not all route type are mandatory, specific support will be based on the vendors implementation
 - Next hop (VTEP IP address) for the route is contained in the MP_REACH_NLRI path attribute

Path Attribute MP_REACH_NLRI	Route Type	Description
Next-hop IP for the prefix = VTEP IP		Auto-Discover Segment route – Used to support EVPNs multi-homing deployment
AFI = 25 (L2VPN) , SAFI =70 (EVPN)	1	models
Route Type	2	MAC address Route - Advertisement of locally learnt/provisioned MAC address an optionally IP addresses.
Length	3	Inclusive Multicast Ethernet Route - used to advertise VTEPs VNI membership for the creation of ingress replication lists
	4	Ethernet Segment Route – used in multi-homing deployments to allow the dynam discovery of shared Ethernet segments
	5	IP prefix Route, advertisement of a IP prefix and next-hop, no MAC address for the route is advertised.


Deploying VXLAN with EVPN Layer 2 VPN deployment model

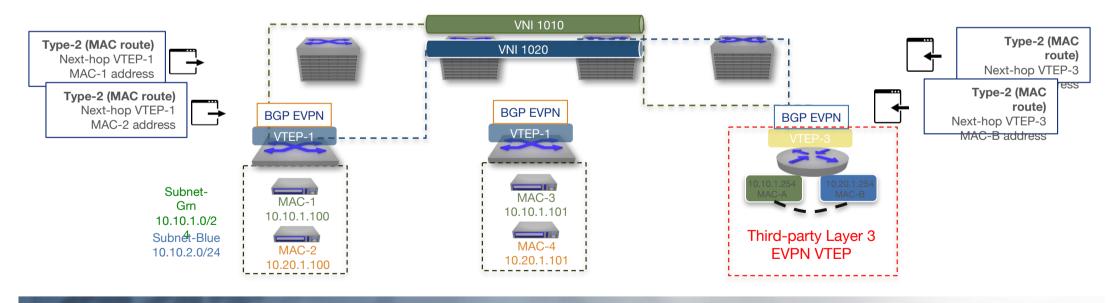
Confidential. Copyright © Arista 2016. All rights reserved.

Layer 2 EVPN deployment model – eBGP topology


- Layer 2 EVPN model, multi-hop eBGP between leaf switches
 - Spine transparent to the EVPN sessions, unless acting as an EVPN/VTEP
 - Full-mesh multi-hop eBGP between Leafs switches sharing a VNI
 - Advertise EVPN type 2 and 3 routes via MP-BGP EVPN session

Layer 2 EVPN – Use case 1

- Layer 2 EVPN model Layer 3 connectivity via external L3 node
 - Layer 2 EVPN Model only announcing MAC routes between VTEPs (type 2 mac route)
 - Providing layer 2 connectivity between leaf across the L3 infrastructure
 - No current support for VXLAN routing on the Arista VTEP nodes in this model
 - Inter-VLAN routing between the layer 2 domains via an external non EVPN aware node

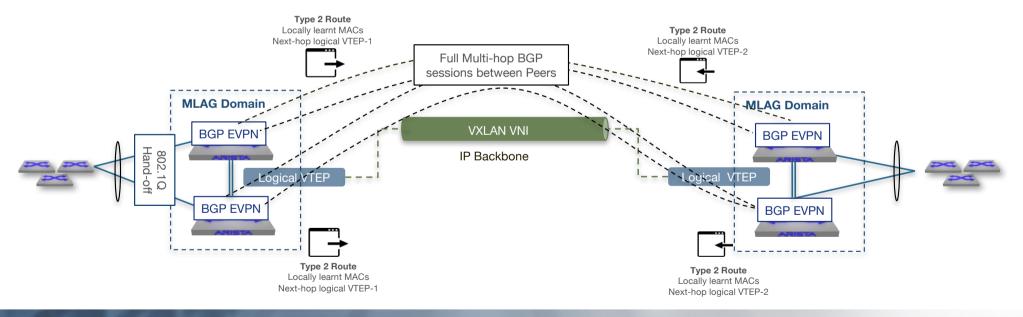


ARISTA

Confidential. Copyright © Arista 2017. All rights reserved.

Layer 2 EVPN – Use case 2

- Layer 2 EVPN model Layer 3 connectivity via third-party Layer3 VTEP inter-op
 - Support for inter-operability with third-party Layer 3 EVPN VTEPs
 - VXLAN Routing achieved on the third-party Layer 3 VTEP, running EVPN
 - MAC addresses exchanged with the third-party via EVPN
 - Support for the third-party in a active-active and active-standby (reception of type 1 route)



ARISTA

Confidential. Copyright © Arista 2017. All rights reserved.

Layer 2 EVPN – Use case 3

- Layer 2 VPN functionality can be used for Standalone DCI solution
 - MLAG Domain at each site for resiliency, with VLAN hand-off to the MLAG nodes
 - BGP control plane to advertise MAC address across the WAN
 - Multi-hop eBGP sessions with the DCI peers at the remote site
 - Advertisement of MAC addresses

Thank You

www.arista.com

Confidential. Copyright © Arista 2016. All rights reserved

