DNS as a Defense Vector

Dr. Paul Vixie CEO, Farsight Security Trex, Tampere FI, 2018-06-15

Topic

DNS Itself

Internet as Territory

- But what **is** the internet?
 - "It's the largest equivalence class in the reflexive transitive symmetric closure of the relationship can be reached by an IP packet from."
 - (Seth Breidbart)
- IP addresses, IP packets, underlie everything
- We overlay IP with many things, e.g., the web
- Most important overlay (for security) is: DNS

DNS as Map

- Most everything we do on the Internet...
 - B2C Web, B2B Web, E-mail, I-M, <your idea here>

...relies on TCP/IP, and begins with a DNS lookup

- Mobile Internet is dominated by search...
 - ...but search itself relies extensively upon DNS
- DNS has a rigorous internal structure
 - Things that are in fact related, are related in DNS
 - You can have *whois* privacy, but not DNS privacy

Criminal DNS

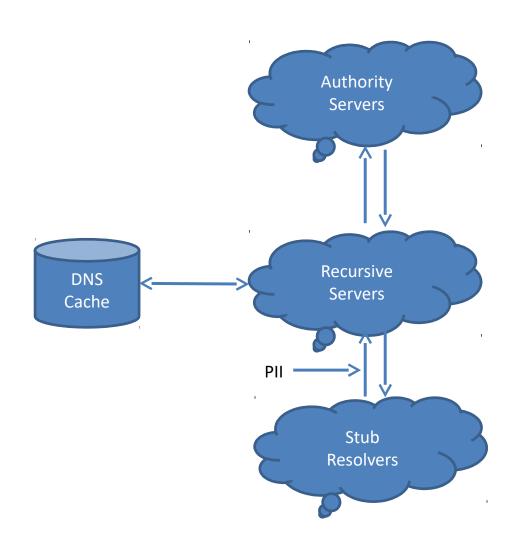
• The Internet has been a great accelerator of human civilization

- Inevitably, this includes human crime

- Online crime is impossible without DNS
 - Cheap throw-away domain names
 - DNS registrars and servers in bad neighborhoods
 - Whois privacy or simply bad whois data
- Nature, to be commanded, must be obeyed.
 (Francis Bacon)

So, About that Internal Structure

- Domain names are grouped into *zones* Like *root* zone, or "COM", or "EXAMPLE.COM"
- A zone has one or more name servers
 Like "COM. NS a.gtld-servers.net."
- Each name server has one or more addresses


 Like "a.gtld-servers.net. A 192.5.6.30"
- Other domain names also have *addresses* Like "www.apnic.net. A 203.119.102.244"
- IP addresses are grouped into netblocks

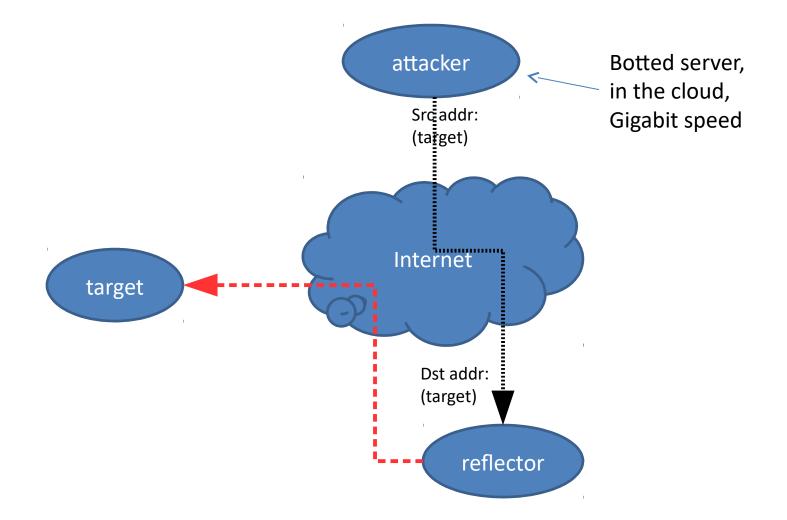
 Like "192.5.6.0/24" or "203.119.102.240/28"

DNS Security Features

- TSIG secures heavy weight transactions
 Like UPDATE, IXFR/AXFR; but not QUERY
- DNSSEC secures data end-to-end
 - Zone is signed; responses contain signatures
 - Zone has keys; these are signed in parent zone
 - QUERY initiator can validate signatures
 - Requires universally trusted root signing key
- Use TSIG and DNSSEC: they work, they'll help
 - But: our actual topic today lies elsewhere

DNS Data Flow

13 root servers, ~250 Cctld's, ~15 old Gtld's, ~2000 new Gtld's, ~500M 2LD/etc

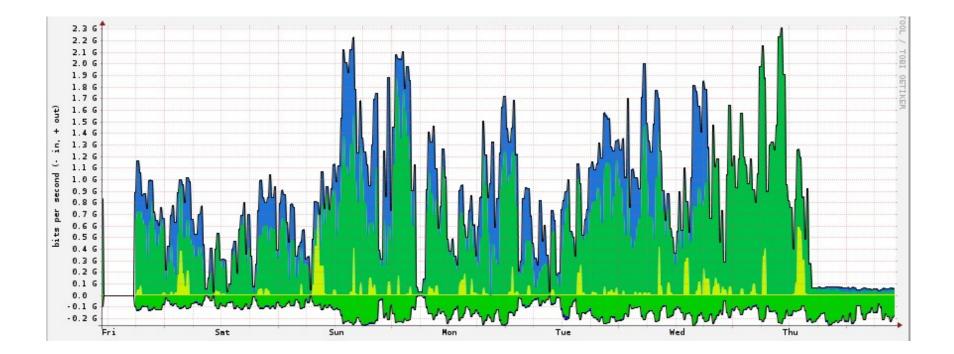

Campus, Enterprise, OpenDNS, GoogleDNS

Servers, Laptops, Smartphones, embedded devs

Topic

DNS As Abused

Spoofed Source Attacks


SECSAC SAC 004 Paul Vixie, ISC October 17, 2002

Securing the Edge

DNS Response Rate Limiting (RRL)

- If you run a DNS content ("authority") server, it has to be massively overprovisioned
- Because OPN's don't have SAV, your server is a purpose-built DNS DDoS reflecting amplifier
- BIND, NSD, Knot now support DNS RRL, which accurately guesses what's safe to drop
- Your authority servers need this, whereas your recursive servers need to be firewalled off

RRL In Action: Afilias

"...too cheap to meter"

- SpamAssassin as a teaching tool
 For example: dotted quads in body as spamsign
- RRP and EPP: solving "the .COM problem"
 Running a race to the bottom (cheaper; sooner)
- Quantity and fluidity having only one purpose – 30 seconds? Really?
- Fitting Sturgeon's revelation
 - "90% of <thing> is crap"

Takedown: Far End Tactics

- Since we can't prevent it...
 - ...we'll have to evolve coping strategies
- Takedown as a Service (TaaS?)
 - Yes, you can outsource this now
- A new profit center! (.TK)
 - "Kill all you want, we'll make more!"
- Whack-a-mole as a Service (WaaS?)
 - Incrementalism breeds better criminals

Firewalls: Near End Tactics

- If we can't prevent it and takedown is hard...
 ...then we'll have to fight them at our doorstep
- We can filter IP+port, URL, and now even DNS
 - But, bad guys are endlessly adaptive
 - Ergo, so must we be
- We can't afford manual configuration
 - So, firewall config now follows a pub-sub model

DNS Firewalls with RPZ

- Uses DNS zones to carry DNS Firewall policy
 R-P-Z = Response Policy Zones
- Pub-sub is handled by NOTIFY/TSIG/IXFR
 Many publishers, many subscribers, one format
- Subscribe to multiple external feeds

 And create your own, for local policy reasons
- Simple failure or walled garden, as you choose
 We call this "taking back the DNS"

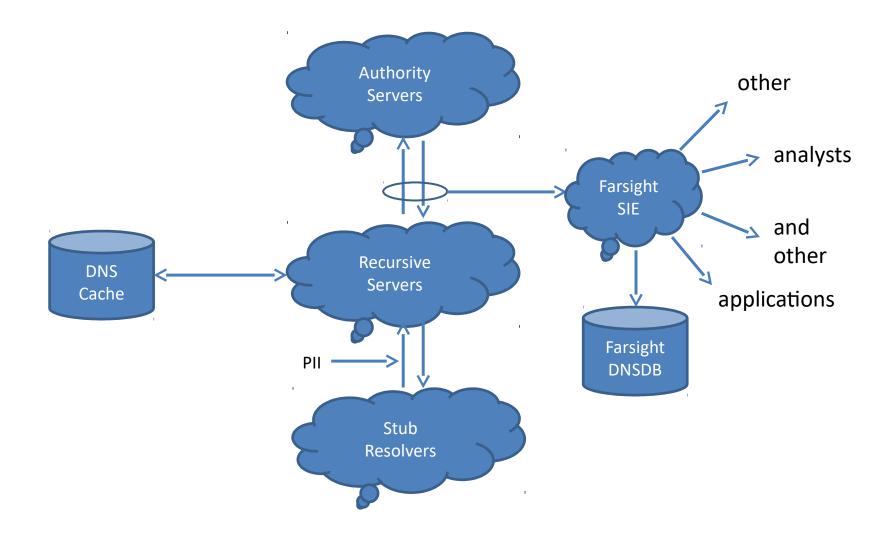
RPZ Capabilities

- Triggers (RR owners):
 - If the query name is \$X
 - If the response contains an address in CIDR \$X
 - If any NS name is \$X
 - If any NS address is in CIDR \$X
 - If the query source address is in CIDR \$X

- Actions (RR data):
 - Synthesize NXDOMAIN
 - Synthesize CNAME
 - Synthesize NODATA
 - Synthesize an answer
 - Answer with the truth

Why Use RPZ?

- Easy stuff:
 - Block access to DGA C&C's
 - Block access to known phish/driveby
 - Block e-mail if envelope/header is spammy
- More interesting stuff:
 - Block DNS A/AAAA records in bad address space
 - E.g., import Cymru Bogons or Spamhaus DROP list
 - Block domains having some computable attribute
 - E.g., Farsight Newly Observed Domains (NOD) list


Key RPZ Takeaways

- Implications:
 - Open market for producers and consumers
 - Differentiated service at a global scale
 - Instantaneous wide area takedown
- Deployment:
 - The RPZ standard is open and unencumbered
 - So far implemented in BIND, Unbound, PowerDNS
 - BIND RPZ performance is not unreasonable (~5% QPS loss)
 - New RPZ features will be backward compatible
 - RPZ is not an IETF standard

Topic

DNS As Observed

Passive DNS Data Flow

Owner Lookup, Show History

```
$ dnsdb_query -r vix.com/ns/vix.com
;; record times: 2010-07-04 16:14:12 \
              .. 2013-05-12 00:55:59
;; count: 2221563; bailiwick: vix.com.
vix.com. NS ns.sql1.vix.com.
vix.com. NS
            ns1.isc-sns.net.
vix.com. NS ns2.isc-sns.com.
vix.com. NS ns3.isc-sns.info.
;; record times: 2013-10-18 06:30:10 \
              .. 2014-02-28 18:13:10
;; count: 330; bailiwick: vix.com.
vix.com. NS buy.internettraffic.com.
vix.com. NS sell.internettraffic.com.
```

Owner Wildcards (left or right side)

<pre>\$ dnsdb_query -r *.vix.com internal.cat.lah1.vix.com.</pre>		fgrep 24.104.150 24.104.150.1
ss.vix.com.	Α	24.104.150.2
gutentag.vix.com.	Α	24.104.150.3
lah1z.vix.com.	Α	24.104.150.4
mm.vix.com.	Α	24.104.150.11
ww.vix.com.	Α	24.104.150.12
<pre>external.cat.lah1.vix.com.</pre>	Α	24.104.150.33
<pre>wireless.cat.lah1.vix.com.</pre>	Α	24.104.150.65
wireless.ss.vix.com.	Α	24.104.150.66
ap-kit.lah1.vix.com.	Α	24.104.150.67
cat.lah1.vix.com.	Α	24.104.150.225
vix.com.	Α	24.104.150.231
deadrat.lah1.vix.com.	Α	24.104.150.232
ns-maps.vix.com.	Α	24.104.150.232
ns.lah1.vix.com.	Α	24.104.150.234

Data Lookup, By Name

<pre>\$./dnsdb_query -n ss.vix.su/mx</pre>					
vix.su.	MX	10	ss.vix.su.		
dns-ok.us.	MX	0	ss.vix.su.		
mibh.com.	MX	0	ss.vix.su.		
iengines.com.	MX	0	ss.vix.su.		
toomanydatsuns.com.	MX	0	ss.vix.su.		
<pre>farsightsecurity.com.</pre>	MX	10	ss.vix.su.		
anog.net.	MX	0	ss.vix.su.		
<pre>mibh.net.</pre>	MX	0	ss.vix.su.		
tisf.net.	MX	10	ss.vix.su.		
iengines.net.	MX	0	ss.vix.su.		
al.org.	MX	0	ss.vix.su.		
vixie.org.	MX	0	ss.vix.su.		
redbarn.org.	MX	0	ss.vix.su.		
benedelman.org.	MX	0	ss.vix.su.		

Data Lookup, by IP Address

\$ dnsdb_query -r ic.fbi.gov/mx
ic.fbi.gov. MX 10 mail.ic.fbi.gov.

\$ dnsdb_query -r mail.ic.fbi.gov/a
mail.ic.fbi.gov. A 153.31.119.142

\$ dnsdb_query -i 153.31.119.142 ic.fbi.gov. A 153.31.119.142 mail.ic.fbi.gov. A 153.31.119.142 mail.ncijtf.fbi.gov. A 153.31.119.142

Data Lookup, by IP Address Block

\$ dnsdb_query -i 153.31.119.0/24 | grep -v infragard vpn.dev2.leo.gov. A 153.31.119.70 mail.leo.gov. 153.31.119.132 Α www.biometriccoe.gov. 153.31.119.135 Α 153.31.119.136 www.leo.gov. Α cgate.leo.gov. Α 153.31.119.136 www.infraguard.net. 153.31.119.138 Α infraguard.org. Α 153.31.119.138 www.infraguard.org. 153.31.119.138 Α 153.31.119.140 mx.leo.gov. Δ ic.fbi.gov. 153.31.119.142 Δ mail.ic.fbi.gov. 153.31.119.142 Α mail.ncijtf.fbi.gov. 153.31.119.142 Α

Technical Formatting Notes

These slides show a DNS output conversion
 The real output is in JSON format, i.e.:

\$ dnsdb_query -r f.root-servers.net/a/root-servers.net
;; record times: 2010-06-24 03:10:38 .. 2014-03-05 01:22:56
;; count: 715301521; bailiwick: root-servers.net.
f.root-servers.net. A 192.5.5.241

\$ dnsdb_query -r f.root-servers.net/a/root-servers.net -j
{"count": 715301521, "time_first": 1277349038, "rrtype": "A",
"rrname": "f.root-servers.net.", "bailiwick": "rootservers.net.", "rdata": ["192.5.5.241"], "time_last": 1393982576}

DNSDB Deployment Notes

- FSI Passive DNS sensor is open source (PCAP)
 'dnstap' is coming soon, for server embedding
- The FSI DNSDB API is open (now an IETF I-D)
 FSI, 360.CN, NIC.AT, &others have servers
- FSI DNSDB is quasi-commercial:
 - Full grant for students (with advisor's approval)
 - Partial grant for those who operate sensors for us
 - Commercially available for use, resale, embedding

Limited Bibliography